Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X

Q is empty.

We use [23] with the following order to prove termination.

Recursive Path Order [2].
Precedence:
2nd1 > activate1 > from1 > cons2 > ncons2
2nd1 > activate1 > from1 > nfrom1
2nd1 > activate1 > from1 > s1